CKM @ A0 North : Summary of the static heat loads

CKM cryo-model at A0 North	75 K - 85 K	1.8 K
Thermal radiation (W)	2.21	0.10
Flanges extremities (W)	5.70	0.007
Run1 - iris at 300 K (W)	-	0.243
Supports spiders (W)	27.20	0.43
Coupler antenna and coaxial cable (W)	3.74	0.21
Warm to Cold Transition (W)	-	0.60
TOTAL HEAT LOAD	38.85	1.59

The heat transfer between the RF cavities and the Titanium outer sell is not estimated (negligible)

CKM @ A0 North: What do we want to measure? To complete...

Goal of the test:

Validation of the 13 cell SRF cryo-system in its final CKM configuration:

- = Run1 in North cave w/o beam Further run in South cave w/ beam
- $= 1 \times 13 \text{ cells} 2 \times 13 \text{ cells}$

Thermal investigations:

- -Measure the static heat load to the 1.8 K temperature level model validation.
- -Influence of the He II bath temperature
- -Temperature distribution in the cryostat
- -To complete...
- -13 cell SRF performance in an Horizontal configuration...

Note:

Nominal heat load: Measured static heat load due to the feed box and vertical dewar ~ 1.8 Watt.

++> Nominal heat load to investigate for CKM heat load measurement purpose...

Existing A0 cryogenics instrumentation & control

- •LHe dewar and recovery lines
- Pump capacity 2.01 g/s (as measured by Brian Degraff) (design capacity = 2.64 g/s)
- Instrumentation & control

- Heat exchanger
- EVJT

CKM @ A0 North - PID

CKM @ A0 North – Preliminary Instrumentation list

Sensor name	Location	Туре	Company	Range	Comment
TN1	Thermal shield- upstream	PT102	Lake shore	30 K-300 K	
TN2	Thermal shield- downstream	PT102	Lake shore	30 K-300 K	
TP35	LN2 return	Platinum resistor		30 K-300 K	already installed at A0 North
TCD1	He cooldown upstream	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
TCD2	He cooldown downstream	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
TR34	JT valve up stream	Carbon resistor		1.6 K-300 K	already installed at A0 North
Tsupply	JT valve down stream	CX-1050-SD-1.4L		1.6 K-300 K	
TP32	Low pressure He	Platinum resistor		1.6 K-300 K	already installed at A0 North
TR33	Low pressure He	Carbon resistor		1.6 K-300 K	already installed at A0 North
The	Helium vessel	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
Thedummy	Dummy Helium vessel	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
THeWC1	Warm to cold transition	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
THeWC2	Warm to cold transition	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
THeC1	Coupler	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
THeC2	Coupler	CX-1050-SD-1.4L	Lake shore	1.6 K-300 K	
Preturn	Helium vessel	C204	Setra	0 - 10 psig	
PHe	Helium vessel	C204	Setra	0 - 10 psig	
FT 1	He Flow meter	FTB-941	Omega	0 - 5 g/s	From photon stop cryotest
LHe	LHe level	6" level	AMI	0 -100 %	
LLHV	LHe level			0 -100 %	already installed at A0 North
LN2	LN2 level			0 -100 %	already installed at A0 North
EVJT	JT valve			0 -100 %	already installed at A0 North
EVVC	Pumping valve			0 -100 %	already installed at A0 North
PVHE	LHe dewar supply valve			0 -100 %	already installed at A0 North
PVN2	LN2 dewar supply valve			0 -100 %	already installed at A0 North
PVVH	Safety recovery			0 -100 %	already installed at A0 North
PVVL	Pumping system valve			0 -100 %	already installed at A0 North
PVVS	Pumping system valve 2			0 -100 %	already installed at A0 North
PV19	Cooldown valve			0 -100 %	already installed at A0 North
JXE	Cavity heater	KHLV-105/10	Omega	50 W	

CKM @ A0 North – DAQ system

New instrumentation:

```
    •9 CX => excitation current = 1 microAmp / output = 0-10 V
    •2 Pt => excitation current = 100 microAmp / output = 0-10 V
    •2 PT => Input = 28 V / output = 0-5 V
    •1 FT => Input = 30 mV / output = 0-5 V
    •1 LT => Input = 30 mV / output = 0-5 V
    •1 JXE => Input = 28 V / output = 0-2 Amp
```

Check reliability of existing Carbon temperature sensors:

• TR34 and TR33

Potential DAQ systems:

- ACNET spare channels from A0 compressor I/O box
- IRM
- •PC card (IO Tech)
 - Current supply, DVM, Switch sys., or expansion box for PC card

CKM @ A0 North - Feed box characteristics

Properties of the JT valve @ A0
Assumption: Pressure before JT = 1.5 atm (22.04 psi)

